Funktion $$$t e^{\frac{1}{2}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int t e^{\frac{1}{2}}\, dt$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ käyttäen $$$c=e^{\frac{1}{2}}$$$ ja $$$f{\left(t \right)} = t$$$:
$${\color{red}{\int{t e^{\frac{1}{2}} d t}}} = {\color{red}{e^{\frac{1}{2}} \int{t d t}}}$$
Sovella potenssisääntöä $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:
$$e^{\frac{1}{2}} {\color{red}{\int{t d t}}}=e^{\frac{1}{2}} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=e^{\frac{1}{2}} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Näin ollen,
$$\int{t e^{\frac{1}{2}} d t} = \frac{t^{2} e^{\frac{1}{2}}}{2}$$
Lisää integrointivakio:
$$\int{t e^{\frac{1}{2}} d t} = \frac{t^{2} e^{\frac{1}{2}}}{2}+C$$
Vastaus
$$$\int t e^{\frac{1}{2}}\, dt = \frac{t^{2} e^{\frac{1}{2}}}{2} + C$$$A