Integraali $$$- x^{2} + \frac{1}{u}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$- x^{2} + \frac{1}{u}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- x^{2} + \frac{1}{u}\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(- x^{2} + \frac{1}{u}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{u} d x} - \int{x^{2} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=\frac{1}{u}$$$:

$$- \int{x^{2} d x} + {\color{red}{\int{\frac{1}{u} d x}}} = - \int{x^{2} d x} + {\color{red}{\frac{x}{u}}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:

$$- {\color{red}{\int{x^{2} d x}}} + \frac{x}{u}=- {\color{red}{\frac{x^{1 + 2}}{1 + 2}}} + \frac{x}{u}=- {\color{red}{\left(\frac{x^{3}}{3}\right)}} + \frac{x}{u}$$

Näin ollen,

$$\int{\left(- x^{2} + \frac{1}{u}\right)d x} = - \frac{x^{3}}{3} + \frac{x}{u}$$

Lisää integrointivakio:

$$\int{\left(- x^{2} + \frac{1}{u}\right)d x} = - \frac{x^{3}}{3} + \frac{x}{u}+C$$

Vastaus

$$$\int \left(- x^{2} + \frac{1}{u}\right)\, dx = \left(- \frac{x^{3}}{3} + \frac{x}{u}\right) + C$$$A


Please try a new game Rotatly