Funktion $$$\sin{\left(3 x \right)} \cos{\left(x \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sin{\left(3 x \right)} \cos{\left(x \right)}\, dx$$$.
Ratkaisu
Kirjoita integroitava uudelleen käyttämällä kaavaa $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$, missä $$$\alpha=3 x$$$ ja $$$\beta=x$$$:
$${\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(4 x \right)}}{2}\right)d x}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(2 x \right)} + \sin{\left(4 x \right)}$$$:
$${\color{red}{\int{\left(\frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(4 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(2 x \right)} + \sin{\left(4 x \right)}\right)d x}}{2}\right)}}$$
Integroi termi kerrallaan:
$$\frac{{\color{red}{\int{\left(\sin{\left(2 x \right)} + \sin{\left(4 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(2 x \right)} d x} + \int{\sin{\left(4 x \right)} d x}\right)}}}{2}$$
Olkoon $$$u=2 x$$$.
Tällöin $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{2}$$$.
Integraali voidaan kirjoittaa muotoon
$$\frac{\int{\sin{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{\int{\sin{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{\int{\sin{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\int{\sin{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{\int{\sin{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Muista, että $$$u=2 x$$$:
$$\frac{\int{\sin{\left(4 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{4} = \frac{\int{\sin{\left(4 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Olkoon $$$u=4 x$$$.
Tällöin $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{4}$$$.
Integraali voidaan kirjoittaa muotoon
$$- \frac{\cos{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(4 x \right)} d x}}}}{2} = - \frac{\cos{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{4}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\cos{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}}{2} = - \frac{\cos{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{4}\right)}}}{2}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = - \frac{\cos{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
Muista, että $$$u=4 x$$$:
$$- \frac{\cos{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = - \frac{\cos{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$
Näin ollen,
$$\int{\sin{\left(3 x \right)} \cos{\left(x \right)} d x} = - \frac{\cos{\left(2 x \right)}}{4} - \frac{\cos{\left(4 x \right)}}{8}$$
Lisää integrointivakio:
$$\int{\sin{\left(3 x \right)} \cos{\left(x \right)} d x} = - \frac{\cos{\left(2 x \right)}}{4} - \frac{\cos{\left(4 x \right)}}{8}+C$$
Vastaus
$$$\int \sin{\left(3 x \right)} \cos{\left(x \right)}\, dx = \left(- \frac{\cos{\left(2 x \right)}}{4} - \frac{\cos{\left(4 x \right)}}{8}\right) + C$$$A