Funktion $$$\cos{\left(5 x^{2} \right)}$$$ integraali

Laskin löytää funktion $$$\cos{\left(5 x^{2} \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \cos{\left(5 x^{2} \right)}\, dx$$$.

Ratkaisu

Olkoon $$$u=\sqrt{5} x$$$.

Tällöin $$$du=\left(\sqrt{5} x\right)^{\prime }dx = \sqrt{5} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{\sqrt{5} du}{5}$$$.

Näin ollen,

$${\color{red}{\int{\cos{\left(5 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{\sqrt{5}}{5}$$$ ja $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$:

$${\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}} = {\color{red}{\left(\frac{\sqrt{5} \int{\cos{\left(u^{2} \right)} d u}}{5}\right)}}$$

Tällä integraalilla (Fresnelin kosini-integraali) ei ole suljettua muotoa:

$$\frac{\sqrt{5} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{5} = \frac{\sqrt{5} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{5}$$

Muista, että $$$u=\sqrt{5} x$$$:

$$\frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{10} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{5} x}}}{\sqrt{\pi}}\right)}{10}$$

Näin ollen,

$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}$$

Lisää integrointivakio:

$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}+C$$

Vastaus

$$$\int \cos{\left(5 x^{2} \right)}\, dx = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10} + C$$$A


Please try a new game Rotatly