Funktion $$$\cos{\left(\frac{2 x}{\pi} \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \cos{\left(\frac{2 x}{\pi} \right)}\, dx$$$.
Ratkaisu
Olkoon $$$u=\frac{2 x}{\pi}$$$.
Tällöin $$$du=\left(\frac{2 x}{\pi}\right)^{\prime }dx = \frac{2}{\pi} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{\pi du}{2}$$$.
Integraali voidaan kirjoittaa muotoon
$${\color{red}{\int{\cos{\left(\frac{2 x}{\pi} \right)} d x}}} = {\color{red}{\int{\frac{\pi \cos{\left(u \right)}}{2} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{\pi}{2}$$$ ja $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\pi \cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\pi \int{\cos{\left(u \right)} d u}}{2}\right)}}$$
Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{2}$$
Muista, että $$$u=\frac{2 x}{\pi}$$$:
$$\frac{\pi \sin{\left({\color{red}{u}} \right)}}{2} = \frac{\pi \sin{\left({\color{red}{\left(\frac{2 x}{\pi}\right)}} \right)}}{2}$$
Näin ollen,
$$\int{\cos{\left(\frac{2 x}{\pi} \right)} d x} = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2}$$
Lisää integrointivakio:
$$\int{\cos{\left(\frac{2 x}{\pi} \right)} d x} = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2}+C$$
Vastaus
$$$\int \cos{\left(\frac{2 x}{\pi} \right)}\, dx = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2} + C$$$A