Funktion $$$6 \cos{\left(3 t \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int 6 \cos{\left(3 t \right)}\, dt$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ käyttäen $$$c=6$$$ ja $$$f{\left(t \right)} = \cos{\left(3 t \right)}$$$:
$${\color{red}{\int{6 \cos{\left(3 t \right)} d t}}} = {\color{red}{\left(6 \int{\cos{\left(3 t \right)} d t}\right)}}$$
Olkoon $$$u=3 t$$$.
Tällöin $$$du=\left(3 t\right)^{\prime }dt = 3 dt$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dt = \frac{du}{3}$$$.
Näin ollen,
$$6 {\color{red}{\int{\cos{\left(3 t \right)} d t}}} = 6 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$6 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}} = 6 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}$$
Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Muista, että $$$u=3 t$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\left(3 t\right)}} \right)}$$
Näin ollen,
$$\int{6 \cos{\left(3 t \right)} d t} = 2 \sin{\left(3 t \right)}$$
Lisää integrointivakio:
$$\int{6 \cos{\left(3 t \right)} d t} = 2 \sin{\left(3 t \right)}+C$$
Vastaus
$$$\int 6 \cos{\left(3 t \right)}\, dt = 2 \sin{\left(3 t \right)} + C$$$A