Funktion $$$\frac{6}{\left(3 x - 2\right)^{3}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=6$$$ ja $$$f{\left(x \right)} = \frac{1}{\left(3 x - 2\right)^{3}}$$$:
$${\color{red}{\int{\frac{6}{\left(3 x - 2\right)^{3}} d x}}} = {\color{red}{\left(6 \int{\frac{1}{\left(3 x - 2\right)^{3}} d x}\right)}}$$
Olkoon $$$u=3 x - 2$$$.
Tällöin $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{3}$$$.
Integraali muuttuu muotoon
$$6 {\color{red}{\int{\frac{1}{\left(3 x - 2\right)^{3}} d x}}} = 6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$:
$$6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}} = 6 {\color{red}{\left(\frac{\int{\frac{1}{u^{3}} d u}}{3}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-3$$$:
$$2 {\color{red}{\int{\frac{1}{u^{3}} d u}}}=2 {\color{red}{\int{u^{-3} d u}}}=2 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=2 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=2 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
Muista, että $$$u=3 x - 2$$$:
$$- {\color{red}{u}}^{-2} = - {\color{red}{\left(3 x - 2\right)}}^{-2}$$
Näin ollen,
$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}$$
Lisää integrointivakio:
$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}+C$$
Vastaus
$$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx = - \frac{1}{\left(3 x - 2\right)^{2}} + C$$$A