Funktion $$$3^{\sqrt{2} \sqrt{x}}$$$ integraali

Laskin löytää funktion $$$3^{\sqrt{2} \sqrt{x}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int 3^{\sqrt{2} \sqrt{x}}\, dx$$$.

Ratkaisu

Kannan vaihto:

$${\color{red}{\int{3^{\sqrt{2} \sqrt{x}} d x}}} = {\color{red}{\int{e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} d x}}}$$

Olkoon $$$u=\sqrt{2} \sqrt{x} \ln{\left(3 \right)}$$$.

Tällöin $$$du=\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)}\right)^{\prime }dx = \frac{\sqrt{2} \ln{\left(3 \right)}}{2 \sqrt{x}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{\sqrt{x}} = \frac{\sqrt{2} du}{\ln{\left(3 \right)}}$$$.

Integraali muuttuu muotoon

$${\color{red}{\int{e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} d x}}} = {\color{red}{\int{\frac{u e^{u}}{\ln{\left(3 \right)}^{2}} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{\ln{\left(3 \right)}^{2}}$$$ ja $$$f{\left(u \right)} = u e^{u}$$$:

$${\color{red}{\int{\frac{u e^{u}}{\ln{\left(3 \right)}^{2}} d u}}} = {\color{red}{\frac{\int{u e^{u} d u}}{\ln{\left(3 \right)}^{2}}}}$$

Integraalin $$$\int{u e^{u} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.

Olkoon $$$\operatorname{g}=u$$$ ja $$$\operatorname{dv}=e^{u} du$$$.

Tällöin $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (vaiheet ovat nähtävissä »).

Siis,

$$\frac{{\color{red}{\int{u e^{u} d u}}}}{\ln{\left(3 \right)}^{2}}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{\ln{\left(3 \right)}^{2}}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{\ln{\left(3 \right)}^{2}}$$

Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{u e^{u} - {\color{red}{\int{e^{u} d u}}}}{\ln{\left(3 \right)}^{2}} = \frac{u e^{u} - {\color{red}{e^{u}}}}{\ln{\left(3 \right)}^{2}}$$

Muista, että $$$u=\sqrt{2} \sqrt{x} \ln{\left(3 \right)}$$$:

$$\frac{- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}}}{\ln{\left(3 \right)}^{2}} = \frac{- e^{{\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}} + {\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}} e^{{\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}}}{\ln{\left(3 \right)}^{2}}$$

Näin ollen,

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\sqrt{2} \sqrt{x} e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} \ln{\left(3 \right)} - e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}$$

Sievennä:

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)} - 1\right) e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}$$

Lisää integrointivakio:

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)} - 1\right) e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}+C$$

Vastaus

$$$\int 3^{\sqrt{2} \sqrt{x}}\, dx = \frac{\left(\sqrt{2} \sqrt{x} \ln\left(3\right) - 1\right) e^{\sqrt{2} \sqrt{x} \ln\left(3\right)}}{\ln^{2}\left(3\right)} + C$$$A


Please try a new game Rotatly