Funktion $$$2 x \cos{\left(x^{2} \right)}$$$ integraali

Laskin löytää funktion $$$2 x \cos{\left(x^{2} \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int 2 x \cos{\left(x^{2} \right)}\, dx$$$.

Ratkaisu

Olkoon $$$u=x^{2}$$$.

Tällöin $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$x dx = \frac{du}{2}$$$.

Integraali muuttuu muotoon

$${\color{red}{\int{2 x \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\cos{\left(u \right)} d u}}}$$

Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$

Muista, että $$$u=x^{2}$$$:

$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{x^{2}}} \right)}$$

Näin ollen,

$$\int{2 x \cos{\left(x^{2} \right)} d x} = \sin{\left(x^{2} \right)}$$

Lisää integrointivakio:

$$\int{2 x \cos{\left(x^{2} \right)} d x} = \sin{\left(x^{2} \right)}+C$$

Vastaus

$$$\int 2 x \cos{\left(x^{2} \right)}\, dx = \sin{\left(x^{2} \right)} + C$$$A


Please try a new game Rotatly