Funktion $$$\frac{21 \sin{\left(\pi x \right)}}{2}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{21 \sin{\left(\pi x \right)}}{2}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{21}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(\pi x \right)}$$$:
$${\color{red}{\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x}}} = {\color{red}{\left(\frac{21 \int{\sin{\left(\pi x \right)} d x}}{2}\right)}}$$
Olkoon $$$u=\pi x$$$.
Tällöin $$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{\pi}$$$.
Näin ollen,
$$\frac{21 {\color{red}{\int{\sin{\left(\pi x \right)} d x}}}}{2} = \frac{21 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{\pi}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{21 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2} = \frac{21 {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi}}}}{2}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{21 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{2 \pi} = \frac{21 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2 \pi}$$
Muista, että $$$u=\pi x$$$:
$$- \frac{21 \cos{\left({\color{red}{u}} \right)}}{2 \pi} = - \frac{21 \cos{\left({\color{red}{\pi x}} \right)}}{2 \pi}$$
Näin ollen,
$$\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x} = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi}$$
Lisää integrointivakio:
$$\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x} = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi}+C$$
Vastaus
$$$\int \frac{21 \sin{\left(\pi x \right)}}{2}\, dx = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi} + C$$$A