Funktion $$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=- \frac{3}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(\frac{x}{2} - 1 \right)}$$$:
$${\color{red}{\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x}}} = {\color{red}{\left(- \frac{3 \int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}{2}\right)}}$$
Olkoon $$$u=\frac{x}{2} - 1$$$.
Tällöin $$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = 2 du$$$.
Integraali voidaan kirjoittaa muotoon
$$- \frac{3 {\color{red}{\int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}}}{2} = - \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=2$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2} = - \frac{3 {\color{red}{\left(2 \int{\sin{\left(u \right)} d u}\right)}}}{2}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- 3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = - 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Muista, että $$$u=\frac{x}{2} - 1$$$:
$$3 \cos{\left({\color{red}{u}} \right)} = 3 \cos{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$
Näin ollen,
$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}$$
Lisää integrointivakio:
$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}+C$$
Vastaus
$$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx = 3 \cos{\left(\frac{x}{2} - 1 \right)} + C$$$A