Funktion $$$\left(\frac{1003}{1000}\right)^{x}$$$ integraali

Laskin löytää funktion $$$\left(\frac{1003}{1000}\right)^{x}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(\frac{1003}{1000}\right)^{x}\, dx$$$.

Ratkaisu

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{1003}{1000}$$$:

$${\color{red}{\int{\left(\frac{1003}{1000}\right)^{x} d x}}} = {\color{red}{\frac{\left(\frac{1003}{1000}\right)^{x}}{\ln{\left(\frac{1003}{1000} \right)}}}}$$

Näin ollen,

$$\int{\left(\frac{1003}{1000}\right)^{x} d x} = \frac{\left(\frac{1003}{1000}\right)^{x}}{\ln{\left(\frac{1003}{1000} \right)}}$$

Sievennä:

$$\int{\left(\frac{1003}{1000}\right)^{x} d x} = \frac{\left(\frac{1003}{1000}\right)^{x}}{- 3 \ln{\left(10 \right)} + \ln{\left(1003 \right)}}$$

Lisää integrointivakio:

$$\int{\left(\frac{1003}{1000}\right)^{x} d x} = \frac{\left(\frac{1003}{1000}\right)^{x}}{- 3 \ln{\left(10 \right)} + \ln{\left(1003 \right)}}+C$$

Vastaus

$$$\int \left(\frac{1003}{1000}\right)^{x}\, dx = \frac{\left(\frac{1003}{1000}\right)^{x}}{- 3 \ln\left(10\right) + \ln\left(1003\right)} + C$$$A


Please try a new game Rotatly