Integraali $$$\frac{a^{3} \ln\left(x\right)}{x}$$$:stä muuttujan $$$e$$$ suhteen

Laskin löytää funktion $$$\frac{a^{3} \ln\left(x\right)}{x}$$$ integraalin/kantafunktion muuttujan $$$e$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de$$$.

Ratkaisu

Sovella vakiosääntöä $$$\int c\, de = c e$$$ käyttäen $$$c=\frac{a^{3} \ln{\left(x \right)}}{x}$$$:

$${\color{red}{\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e}}} = {\color{red}{\frac{a^{3} e \ln{\left(x \right)}}{x}}}$$

Näin ollen,

$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}$$

Lisää integrointivakio:

$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}+C$$

Vastaus

$$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de = \frac{a^{3} e \ln\left(x\right)}{x} + C$$$A


Please try a new game Rotatly