Funktion $$$\frac{\sqrt{x - 1}}{x}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\sqrt{x - 1}}{x}\, dx$$$.
Ratkaisu
Olkoon $$$u=\sqrt{x - 1}$$$.
Tällöin $$$du=\left(\sqrt{x - 1}\right)^{\prime }dx = \frac{1}{2 \sqrt{x - 1}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{\sqrt{x - 1}} = 2 du$$$.
Integraali voidaan kirjoittaa muotoon
$${\color{red}{\int{\frac{\sqrt{x - 1}}{x} d x}}} = {\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=2$$$ ja $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\left(2 \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
Kirjoita murtolauseke uudelleen ja jaa se osamurtoihin:
$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Integroi termi kerrallaan:
$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:
$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$
Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Muista, että $$$u=\sqrt{x - 1}$$$:
$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\sqrt{x - 1}}} \right)} + 2 {\color{red}{\sqrt{x - 1}}}$$
Näin ollen,
$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}$$
Lisää integrointivakio:
$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}+C$$
Vastaus
$$$\int \frac{\sqrt{x - 1}}{x}\, dx = \left(2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}\right) + C$$$A