Integraali $$$\frac{a^{2}}{x^{2}}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{a^{2}}{x^{2}}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=a^{2}$$$ ja $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\frac{a^{2}}{x^{2}} d x}}} = {\color{red}{a^{2} \int{\frac{1}{x^{2}} d x}}}$$
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-2$$$:
$$a^{2} {\color{red}{\int{\frac{1}{x^{2}} d x}}}=a^{2} {\color{red}{\int{x^{-2} d x}}}=a^{2} {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=a^{2} {\color{red}{\left(- x^{-1}\right)}}=a^{2} {\color{red}{\left(- \frac{1}{x}\right)}}$$
Näin ollen,
$$\int{\frac{a^{2}}{x^{2}} d x} = - \frac{a^{2}}{x}$$
Lisää integrointivakio:
$$\int{\frac{a^{2}}{x^{2}} d x} = - \frac{a^{2}}{x}+C$$
Vastaus
$$$\int \frac{a^{2}}{x^{2}}\, dx = - \frac{a^{2}}{x} + C$$$A