Funktion $$$\frac{1}{\sqrt{- x^{2} + x}}$$$ integraali

Laskin löytää funktion $$$\frac{1}{\sqrt{- x^{2} + x}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx$$$.

Ratkaisu

Täydennä neliöksi (vaiheet näkyvät »): $$$- x^{2} + x = \frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{- x^{2} + x}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}}$$

Olkoon $$$u=x - \frac{1}{2}$$$.

Tällöin $$$du=\left(x - \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Näin ollen,

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}}$$

Olkoon $$$u=\frac{\sin{\left(v \right)}}{2}$$$.

Tällöin $$$du=\left(\frac{\sin{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\cos{\left(v \right)}}{2} dv$$$ (ratkaisuvaiheet ovat nähtävissä »).

Lisäksi seuraa, että $$$v=\operatorname{asin}{\left(2 u \right)}$$$.

Siis,

$$$\frac{1}{\sqrt{\frac{1}{4} - u ^{2}}} = \frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}$$$

Käytä identiteettiä $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:

$$$\frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}=\frac{2}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}}$$$

Olettamalla, että $$$\cos{\left( v \right)} \ge 0$$$, saamme seuraavaa:

$$$\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{2}{\cos{\left( v \right)}}$$$

Näin ollen,

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}} = {\color{red}{\int{1 d v}}}$$

Sovella vakiosääntöä $$$\int c\, dv = c v$$$ käyttäen $$$c=1$$$:

$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$

Muista, että $$$v=\operatorname{asin}{\left(2 u \right)}$$$:

$${\color{red}{v}} = {\color{red}{\operatorname{asin}{\left(2 u \right)}}}$$

Muista, että $$$u=x - \frac{1}{2}$$$:

$$\operatorname{asin}{\left(2 {\color{red}{u}} \right)} = \operatorname{asin}{\left(2 {\color{red}{\left(x - \frac{1}{2}\right)}} \right)}$$

Näin ollen,

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}$$

Lisää integrointivakio:

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}+C$$

Vastaus

$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx = \operatorname{asin}{\left(2 x - 1 \right)} + C$$$A


Please try a new game Rotatly