Funktion $$$- \ln\left(x\right) + \frac{1}{\ln\left(x\right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(- \ln\left(x\right) + \frac{1}{\ln\left(x\right)}\right)\, dx$$$.
Ratkaisu
Integroi termi kerrallaan:
$${\color{red}{\int{\left(- \ln{\left(x \right)} + \frac{1}{\ln{\left(x \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{\ln{\left(x \right)}} d x} - \int{\ln{\left(x \right)} d x}\right)}}$$
Tällä integraalilla (Logaritminen integraali) ei ole suljettua muotoa:
$$- \int{\ln{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{\ln{\left(x \right)}} d x}}} = - \int{\ln{\left(x \right)} d x} + {\color{red}{\operatorname{li}{\left(x \right)}}}$$
Integraalin $$$\int{\ln{\left(x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(x \right)}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Näin ollen,
$$\operatorname{li}{\left(x \right)} - {\color{red}{\int{\ln{\left(x \right)} d x}}}=\operatorname{li}{\left(x \right)} - {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=\operatorname{li}{\left(x \right)} - {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:
$$- x \ln{\left(x \right)} + \operatorname{li}{\left(x \right)} + {\color{red}{\int{1 d x}}} = - x \ln{\left(x \right)} + \operatorname{li}{\left(x \right)} + {\color{red}{x}}$$
Näin ollen,
$$\int{\left(- \ln{\left(x \right)} + \frac{1}{\ln{\left(x \right)}}\right)d x} = - x \ln{\left(x \right)} + x + \operatorname{li}{\left(x \right)}$$
Lisää integrointivakio:
$$\int{\left(- \ln{\left(x \right)} + \frac{1}{\ln{\left(x \right)}}\right)d x} = - x \ln{\left(x \right)} + x + \operatorname{li}{\left(x \right)}+C$$
Vastaus
$$$\int \left(- \ln\left(x\right) + \frac{1}{\ln\left(x\right)}\right)\, dx = \left(- x \ln\left(x\right) + x + \operatorname{li}{\left(x \right)}\right) + C$$$A