Funktion $$$-1 + \frac{1}{\cos{\left(x \right)}}$$$ integraali

Laskin löytää funktion $$$-1 + \frac{1}{\cos{\left(x \right)}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(-1 + \frac{1}{\cos{\left(x \right)}}\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\cos{\left(x \right)}} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:

$$\int{\frac{1}{\cos{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\cos{\left(x \right)}} d x} - {\color{red}{x}}$$

Kirjoita kosini sinin avulla kaavaa $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ käyttäen ja kirjoita sitten sini uudelleen kaksinkertaisen kulman kaavaa $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ käyttäen:

$$- x + {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$

Kerro osoittaja ja nimittäjä luvulla $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:

$$- x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = - x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$

Olkoon $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$.

Tällöin $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$.

Siis,

$$- x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{u} d u}}}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- x + {\color{red}{\int{\frac{1}{u} d u}}} = - x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Muista, että $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:

$$- x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x + \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$

Näin ollen,

$$\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}$$

Lisää integrointivakio:

$$\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}+C$$

Vastaus

$$$\int \left(-1 + \frac{1}{\cos{\left(x \right)}}\right)\, dx = \left(- x + \ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)\right) + C$$$A


Please try a new game Rotatly