Funktion $$$\frac{1}{x \ln\left(x\right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{x \ln\left(x\right)}\, dx$$$.
Ratkaisu
Olkoon $$$u=\ln{\left(x \right)}$$$.
Tällöin $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x} = du$$$.
Näin ollen,
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Muista, että $$$u=\ln{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}$$
Näin ollen,
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}$$
Lisää integrointivakio:
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}+C$$
Vastaus
$$$\int \frac{1}{x \ln\left(x\right)}\, dx = \ln\left(\left|{\ln\left(x\right)}\right|\right) + C$$$A