Integraali $$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx$$$.
Ratkaisu
Olkoon $$$u=\frac{c}{x}$$$.
Tällöin $$$du=\left(\frac{c}{x}\right)^{\prime }dx = - \frac{c}{x^{2}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x^{2}} = - \frac{du}{c}$$$.
Integraali muuttuu muotoon
$${\color{red}{\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$:
$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$
Olkoon $$$v=\ln{\left(u \right)}$$$.
Tällöin $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{du}{u} = dv$$$.
Näin ollen,
$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$
Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Muista, että $$$v=\ln{\left(u \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
Muista, että $$$u=\frac{c}{x}$$$:
$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\frac{c}{x}}} \right)}}\right| \right)}$$
Näin ollen,
$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}$$
Lisää integrointivakio:
$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}+C$$
Vastaus
$$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx = - \ln\left(\left|{\ln\left(\frac{c}{x}\right)}\right|\right) + C$$$A