Integraali $$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx$$$.

Ratkaisu

Olkoon $$$u=\frac{c}{x}$$$.

Tällöin $$$du=\left(\frac{c}{x}\right)^{\prime }dx = - \frac{c}{x^{2}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x^{2}} = - \frac{du}{c}$$$.

Integraali muuttuu muotoon

$${\color{red}{\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$:

$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$

Olkoon $$$v=\ln{\left(u \right)}$$$.

Tällöin $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{du}{u} = dv$$$.

Näin ollen,

$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$

Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Muista, että $$$v=\ln{\left(u \right)}$$$:

$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$

Muista, että $$$u=\frac{c}{x}$$$:

$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\frac{c}{x}}} \right)}}\right| \right)}$$

Näin ollen,

$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}$$

Lisää integrointivakio:

$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}+C$$

Vastaus

$$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx = - \ln\left(\left|{\ln\left(\frac{c}{x}\right)}\right|\right) + C$$$A


Please try a new game Rotatly