Funktion $$$\frac{1}{4 - x^{2}}$$$ integraali

Laskin löytää funktion $$$\frac{1}{4 - x^{2}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{4 - x^{2}}\, dx$$$.

Ratkaisu

Suorita osamurtokehittely (vaiheet voidaan nähdä kohdassa »):

$${\color{red}{\int{\frac{1}{4 - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{4 \left(x + 2\right)} - \frac{1}{4 \left(x - 2\right)}\right)d x}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(\frac{1}{4 \left(x + 2\right)} - \frac{1}{4 \left(x - 2\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{4 \left(x - 2\right)} d x} + \int{\frac{1}{4 \left(x + 2\right)} d x}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{4}$$$ ja $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:

$$\int{\frac{1}{4 \left(x + 2\right)} d x} - {\color{red}{\int{\frac{1}{4 \left(x - 2\right)} d x}}} = \int{\frac{1}{4 \left(x + 2\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x - 2} d x}}{4}\right)}}$$

Olkoon $$$u=x - 2$$$.

Tällöin $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Integraali voidaan kirjoittaa muotoon

$$\int{\frac{1}{4 \left(x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x - 2} d x}}}}{4} = \int{\frac{1}{4 \left(x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{1}{4 \left(x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4} = \int{\frac{1}{4 \left(x + 2\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

Muista, että $$$u=x - 2$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} + \int{\frac{1}{4 \left(x + 2\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}}{4} + \int{\frac{1}{4 \left(x + 2\right)} d x}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{4}$$$ ja $$$f{\left(x \right)} = \frac{1}{x + 2}$$$:

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + {\color{red}{\int{\frac{1}{4 \left(x + 2\right)} d x}}} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + {\color{red}{\left(\frac{\int{\frac{1}{x + 2} d x}}{4}\right)}}$$

Olkoon $$$u=x + 2$$$.

Tällöin $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Siis,

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + \frac{{\color{red}{\int{\frac{1}{x + 2} d x}}}}{4} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

Muista, että $$$u=x + 2$$$:

$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + \frac{\ln{\left(\left|{{\color{red}{\left(x + 2\right)}}}\right| \right)}}{4}$$

Näin ollen,

$$\int{\frac{1}{4 - x^{2}} d x} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{4} + \frac{\ln{\left(\left|{x + 2}\right| \right)}}{4}$$

Sievennä:

$$\int{\frac{1}{4 - x^{2}} d x} = \frac{- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x + 2}\right| \right)}}{4}$$

Lisää integrointivakio:

$$\int{\frac{1}{4 - x^{2}} d x} = \frac{- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x + 2}\right| \right)}}{4}+C$$

Vastaus

$$$\int \frac{1}{4 - x^{2}}\, dx = \frac{- \ln\left(\left|{x - 2}\right|\right) + \ln\left(\left|{x + 2}\right|\right)}{4} + C$$$A


Please try a new game Rotatly