Funktion $$$\frac{1}{\left(3 x - 1\right)^{2}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx$$$.
Ratkaisu
Olkoon $$$u=3 x - 1$$$.
Tällöin $$$du=\left(3 x - 1\right)^{\prime }dx = 3 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{3}$$$.
Näin ollen,
$${\color{red}{\int{\frac{1}{\left(3 x - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{3 u^{2}} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$${\color{red}{\int{\frac{1}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2}} d u}}{3}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{3}=\frac{{\color{red}{\int{u^{-2} d u}}}}{3}=\frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{3}=\frac{{\color{red}{\left(- u^{-1}\right)}}}{3}=\frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{3}$$
Muista, että $$$u=3 x - 1$$$:
$$- \frac{{\color{red}{u}}^{-1}}{3} = - \frac{{\color{red}{\left(3 x - 1\right)}}^{-1}}{3}$$
Näin ollen,
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{3 \left(3 x - 1\right)}$$
Sievennä:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}$$
Lisää integrointivakio:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}+C$$
Vastaus
$$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx = - \frac{1}{9 x - 3} + C$$$A