Funktion $$$- \sin^{2}{\left(2 t \right)}$$$ integraali

Laskin löytää funktion $$$- \sin^{2}{\left(2 t \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- \sin^{2}{\left(2 t \right)}\right)\, dt$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(t \right)} = \sin^{2}{\left(2 t \right)}$$$:

$${\color{red}{\int{\left(- \sin^{2}{\left(2 t \right)}\right)d t}}} = {\color{red}{\left(- \int{\sin^{2}{\left(2 t \right)} d t}\right)}}$$

Olkoon $$$u=2 t$$$.

Tällöin $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dt = \frac{du}{2}$$$.

Näin ollen,

$$- {\color{red}{\int{\sin^{2}{\left(2 t \right)} d t}}} = - {\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{2} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \sin^{2}{\left(u \right)}$$$:

$$- {\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{2} d u}}} = - {\color{red}{\left(\frac{\int{\sin^{2}{\left(u \right)} d u}}{2}\right)}}$$

Sovella potenssin alentamiskaavaa $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ käyttäen $$$\alpha= u $$$:

$$- \frac{{\color{red}{\int{\sin^{2}{\left(u \right)} d u}}}}{2} = - \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = 1 - \cos{\left(2 u \right)}$$$:

$$- \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{2} = - \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}{2}\right)}}}{2}$$

Integroi termi kerrallaan:

$$- \frac{{\color{red}{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}}}{4} = - \frac{{\color{red}{\left(\int{1 d u} - \int{\cos{\left(2 u \right)} d u}\right)}}}{4}$$

Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:

$$\frac{\int{\cos{\left(2 u \right)} d u}}{4} - \frac{{\color{red}{\int{1 d u}}}}{4} = \frac{\int{\cos{\left(2 u \right)} d u}}{4} - \frac{{\color{red}{u}}}{4}$$

Olkoon $$$v=2 u$$$.

Tällöin $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$du = \frac{dv}{2}$$$.

Integraali voidaan kirjoittaa muotoon

$$- \frac{u}{4} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{4} = - \frac{u}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{4}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$- \frac{u}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{4} = - \frac{u}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{4}$$

Kosinin integraali on $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$- \frac{u}{4} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{8} = - \frac{u}{4} + \frac{{\color{red}{\sin{\left(v \right)}}}}{8}$$

Muista, että $$$v=2 u$$$:

$$- \frac{u}{4} + \frac{\sin{\left({\color{red}{v}} \right)}}{8} = - \frac{u}{4} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$

Muista, että $$$u=2 t$$$:

$$\frac{\sin{\left(2 {\color{red}{u}} \right)}}{8} - \frac{{\color{red}{u}}}{4} = \frac{\sin{\left(2 {\color{red}{\left(2 t\right)}} \right)}}{8} - \frac{{\color{red}{\left(2 t\right)}}}{4}$$

Näin ollen,

$$\int{\left(- \sin^{2}{\left(2 t \right)}\right)d t} = - \frac{t}{2} + \frac{\sin{\left(4 t \right)}}{8}$$

Lisää integrointivakio:

$$\int{\left(- \sin^{2}{\left(2 t \right)}\right)d t} = - \frac{t}{2} + \frac{\sin{\left(4 t \right)}}{8}+C$$

Vastaus

$$$\int \left(- \sin^{2}{\left(2 t \right)}\right)\, dt = \left(- \frac{t}{2} + \frac{\sin{\left(4 t \right)}}{8}\right) + C$$$A


Please try a new game Rotatly