Funktion $$$- \sqrt{3 - x}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(- \sqrt{3 - x}\right)\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(x \right)} = \sqrt{3 - x}$$$:
$${\color{red}{\int{\left(- \sqrt{3 - x}\right)d x}}} = {\color{red}{\left(- \int{\sqrt{3 - x} d x}\right)}}$$
Olkoon $$$u=3 - x$$$.
Tällöin $$$du=\left(3 - x\right)^{\prime }dx = - dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - du$$$.
Integraali voidaan kirjoittaa muotoon
$$- {\color{red}{\int{\sqrt{3 - x} d x}}} = - {\color{red}{\int{\left(- \sqrt{u}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \sqrt{u}$$$:
$$- {\color{red}{\int{\left(- \sqrt{u}\right)d u}}} = - {\color{red}{\left(- \int{\sqrt{u} d u}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=\frac{1}{2}$$$:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Muista, että $$$u=3 - x$$$:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\left(3 - x\right)}}^{\frac{3}{2}}}{3}$$
Näin ollen,
$$\int{\left(- \sqrt{3 - x}\right)d x} = \frac{2 \left(3 - x\right)^{\frac{3}{2}}}{3}$$
Lisää integrointivakio:
$$\int{\left(- \sqrt{3 - x}\right)d x} = \frac{2 \left(3 - x\right)^{\frac{3}{2}}}{3}+C$$
Vastaus
$$$\int \left(- \sqrt{3 - x}\right)\, dx = \frac{2 \left(3 - x\right)^{\frac{3}{2}}}{3} + C$$$A