Funktion $$$- 6 \ln\left(- 2 x\right)$$$ integraali

Laskin löytää funktion $$$- 6 \ln\left(- 2 x\right)$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- 6 \ln\left(- 2 x\right)\right)\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=-6$$$ ja $$$f{\left(x \right)} = \ln{\left(- 2 x \right)}$$$:

$${\color{red}{\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x}}} = {\color{red}{\left(- 6 \int{\ln{\left(- 2 x \right)} d x}\right)}}$$

Olkoon $$$u=- 2 x$$$.

Tällöin $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - \frac{du}{2}$$$.

Siis,

$$- 6 {\color{red}{\int{\ln{\left(- 2 x \right)} d x}}} = - 6 {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=- \frac{1}{2}$$$ ja $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:

$$- 6 {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}} = - 6 {\color{red}{\left(- \frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}$$

Integraalin $$$\int{\ln{\left(u \right)} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.

Olkoon $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ ja $$$\operatorname{dv}=du$$$.

Tällöin $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d u}=u$$$ (vaiheet ovat nähtävissä »).

Integraali muuttuu muotoon

$$3 {\color{red}{\int{\ln{\left(u \right)} d u}}}=3 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=3 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:

$$3 u \ln{\left(u \right)} - 3 {\color{red}{\int{1 d u}}} = 3 u \ln{\left(u \right)} - 3 {\color{red}{u}}$$

Muista, että $$$u=- 2 x$$$:

$$- 3 {\color{red}{u}} + 3 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 3 {\color{red}{\left(- 2 x\right)}} + 3 {\color{red}{\left(- 2 x\right)}} \ln{\left({\color{red}{\left(- 2 x\right)}} \right)}$$

Näin ollen,

$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = - 6 x \ln{\left(- 2 x \right)} + 6 x$$

Sievennä:

$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = 6 x \left(- \ln{\left(- x \right)} - \ln{\left(2 \right)} + 1\right)$$

Lisää integrointivakio:

$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = 6 x \left(- \ln{\left(- x \right)} - \ln{\left(2 \right)} + 1\right)+C$$

Vastaus

$$$\int \left(- 6 \ln\left(- 2 x\right)\right)\, dx = 6 x \left(- \ln\left(- x\right) - \ln\left(2\right) + 1\right) + C$$$A


Please try a new game Rotatly