Funktion $$$- \frac{1}{\sqrt{16 - 4 x^{2}}}$$$ integraali

Laskin löytää funktion $$$- \frac{1}{\sqrt{16 - 4 x^{2}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)\, dx$$$.

Ratkaisu

Yksinkertaista integroitavaa:

$${\color{red}{\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \sqrt{4 - x^{2}}}\right)d x}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=- \frac{1}{2}$$$ ja $$$f{\left(x \right)} = \frac{1}{\sqrt{4 - x^{2}}}$$$:

$${\color{red}{\int{\left(- \frac{1}{2 \sqrt{4 - x^{2}}}\right)d x}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{4 - x^{2}}} d x}}{2}\right)}}$$

Olkoon $$$x=2 \sin{\left(u \right)}$$$.

Tällöin $$$dx=\left(2 \sin{\left(u \right)}\right)^{\prime }du = 2 \cos{\left(u \right)} du$$$ (ratkaisuvaiheet ovat nähtävissä »).

Lisäksi seuraa, että $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$.

Siis,

$$$\frac{1}{\sqrt{4 - x^{2}}} = \frac{1}{\sqrt{4 - 4 \sin^{2}{\left( u \right)}}}$$$

Käytä identiteettiä $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{4 - 4 \sin^{2}{\left( u \right)}}}=\frac{1}{2 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{2 \sqrt{\cos^{2}{\left( u \right)}}}$$$

Olettamalla, että $$$\cos{\left( u \right)} \ge 0$$$, saamme seuraavaa:

$$$\frac{1}{2 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{2 \cos{\left( u \right)}}$$$

Integraali muuttuu

$$- \frac{{\color{red}{\int{\frac{1}{\sqrt{4 - x^{2}}} d x}}}}{2} = - \frac{{\color{red}{\int{1 d u}}}}{2}$$

Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:

$$- \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{{\color{red}{u}}}{2}$$

Muista, että $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$:

$$- \frac{{\color{red}{u}}}{2} = - \frac{{\color{red}{\operatorname{asin}{\left(\frac{x}{2} \right)}}}}{2}$$

Näin ollen,

$$\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x} = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2}$$

Lisää integrointivakio:

$$\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x} = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2}+C$$

Vastaus

$$$\int \left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)\, dx = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly