Funktion $$$\frac{\tan^{2}{\left(x \right)}}{2}$$$ integraali

Laskin löytää funktion $$$\frac{\tan^{2}{\left(x \right)}}{2}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\tan^{2}{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(x \right)} d x}}{2}\right)}}$$

Olkoon $$$u=\tan{\left(x \right)}$$$.

Tällöin $$$x=\operatorname{atan}{\left(u \right)}$$$ ja $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (vaiheet ovat nähtävissä »).

Näin ollen,

$$\frac{{\color{red}{\int{\tan^{2}{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2}$$

Kirjoita murtolauseke uudelleen ja jaa se osamurtoihin:

$$\frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2}$$

Integroi termi kerrallaan:

$$\frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{2}$$

Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:

$$- \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{u}}}{2}$$

Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{u}{2} - \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{u}{2} - \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$

Muista, että $$$u=\tan{\left(x \right)}$$$:

$$- \frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}}{2}$$

Näin ollen,

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = \frac{\tan{\left(x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2}$$

Sievennä:

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}$$

Lisää integrointivakio:

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}+C$$

Vastaus

$$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx = \left(- \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly