Integraali $$$\frac{1}{x \ln^{3}\left(x\right)}$$$:stä muuttujan $$$t$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$.
Ratkaisu
Sovella vakiosääntöä $$$\int c\, dt = c t$$$ käyttäen $$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$:
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$
Näin ollen,
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$
Lisää integrointivakio:
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$
Vastaus
$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A