Funktion $$$- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}$$$ integraali

Laskin löytää funktion $$$- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx$$$.

Ratkaisu

Syöte kirjoitetaan muotoon: $$$\int{\left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)d x}=\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}$$$.

Olkoon $$$u=x^{2}$$$.

Tällöin $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$x dx = \frac{du}{2}$$$.

Näin ollen,

$${\color{red}{\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}}} = {\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=- \frac{1}{10}$$$ ja $$$f{\left(u \right)} = \left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}$$$:

$${\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}} = {\color{red}{\left(- \frac{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}{10}\right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{2^{\frac{2}{5}}}{2}$$$:

$$- \frac{{\color{red}{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}}}{10} = - \frac{{\color{red}{\frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{\ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}}}}{10}$$

Muista, että $$$u=x^{2}$$$:

$$- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{u}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{x^{2}}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$

Näin ollen,

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$

Sievennä:

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}$$

Lisää integrointivakio:

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}+C$$

Vastaus

$$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly