Funktion $$$\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$ integraali

Laskin löytää funktion $$$\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=8$$$ ja $$$f{\left(x \right)} = \frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$:

$${\color{red}{\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(8 \int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}\right)}}$$

Olkoon $$$u=\operatorname{acos}{\left(x \right)}$$$.

Tällöin $$$du=\left(\operatorname{acos}{\left(x \right)}\right)^{\prime }dx = - \frac{1}{\sqrt{1 - x^{2}}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{\sqrt{1 - x^{2}}} = - du$$$.

Näin ollen,

$$8 {\color{red}{\int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = 8 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = e^{u}$$$:

$$8 {\color{red}{\int{\left(- e^{u}\right)d u}}} = 8 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:

$$- 8 {\color{red}{\int{e^{u} d u}}} = - 8 {\color{red}{e^{u}}}$$

Muista, että $$$u=\operatorname{acos}{\left(x \right)}$$$:

$$- 8 e^{{\color{red}{u}}} = - 8 e^{{\color{red}{\operatorname{acos}{\left(x \right)}}}}$$

Näin ollen,

$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}$$

Lisää integrointivakio:

$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}+C$$

Vastaus

$$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx = - 8 e^{\operatorname{acos}{\left(x \right)}} + C$$$A


Please try a new game Rotatly