Funktion $$$\left(x + 1\right) \left(x + 2\right)$$$ integraali

Laskin löytää funktion $$$\left(x + 1\right) \left(x + 2\right)$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(x + 1\right) \left(x + 2\right)\, dx$$$.

Ratkaisu

Expand the expression:

$${\color{red}{\int{\left(x + 1\right) \left(x + 2\right) d x}}} = {\color{red}{\int{\left(x^{2} + 3 x + 2\right)d x}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(x^{2} + 3 x + 2\right)d x}}} = {\color{red}{\left(\int{2 d x} + \int{3 x d x} + \int{x^{2} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=2$$$:

$$\int{3 x d x} + \int{x^{2} d x} + {\color{red}{\int{2 d x}}} = \int{3 x d x} + \int{x^{2} d x} + {\color{red}{\left(2 x\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:

$$2 x + \int{3 x d x} + {\color{red}{\int{x^{2} d x}}}=2 x + \int{3 x d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=2 x + \int{3 x d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=3$$$ ja $$$f{\left(x \right)} = x$$$:

$$\frac{x^{3}}{3} + 2 x + {\color{red}{\int{3 x d x}}} = \frac{x^{3}}{3} + 2 x + {\color{red}{\left(3 \int{x d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$\frac{x^{3}}{3} + 2 x + 3 {\color{red}{\int{x d x}}}=\frac{x^{3}}{3} + 2 x + 3 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{3} + 2 x + 3 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Näin ollen,

$$\int{\left(x + 1\right) \left(x + 2\right) d x} = \frac{x^{3}}{3} + \frac{3 x^{2}}{2} + 2 x$$

Sievennä:

$$\int{\left(x + 1\right) \left(x + 2\right) d x} = \frac{x \left(2 x^{2} + 9 x + 12\right)}{6}$$

Lisää integrointivakio:

$$\int{\left(x + 1\right) \left(x + 2\right) d x} = \frac{x \left(2 x^{2} + 9 x + 12\right)}{6}+C$$

Vastaus

$$$\int \left(x + 1\right) \left(x + 2\right)\, dx = \frac{x \left(2 x^{2} + 9 x + 12\right)}{6} + C$$$A


Please try a new game Rotatly