Funktion $$$\left(4 x - 2\right) e^{x^{2} - x}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx$$$.
Ratkaisu
Syöte kirjoitetaan muotoon: $$$\int{\left(4 x - 2\right) e^{x^{2} - x} d x}=\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}$$$.
Olkoon $$$u=x \left(x - 1\right)$$$.
Tällöin $$$du=\left(x \left(x - 1\right)\right)^{\prime }dx = \left(2 x - 1\right) dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\left(2 x - 1\right) dx = du$$$.
Integraali muuttuu muotoon
$${\color{red}{\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}}} = {\color{red}{\int{2 e^{u} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=2$$$ ja $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{2 e^{u} d u}}} = {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:
$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$
Muista, että $$$u=x \left(x - 1\right)$$$:
$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{x \left(x - 1\right)}}}$$
Näin ollen,
$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}$$
Lisää integrointivakio:
$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}+C$$
Vastaus
$$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx = 2 e^{x \left(x - 1\right)} + C$$$A