Funktion $$$\left(3 x - 2\right) \left(4 x - 1\right)$$$ integraali

Laskin löytää funktion $$$\left(3 x - 2\right) \left(4 x - 1\right)$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(3 x - 2\right) \left(4 x - 1\right)\, dx$$$.

Ratkaisu

Expand the expression:

$${\color{red}{\int{\left(3 x - 2\right) \left(4 x - 1\right) d x}}} = {\color{red}{\int{\left(12 x^{2} - 11 x + 2\right)d x}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(12 x^{2} - 11 x + 2\right)d x}}} = {\color{red}{\left(\int{2 d x} - \int{11 x d x} + \int{12 x^{2} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=2$$$:

$$- \int{11 x d x} + \int{12 x^{2} d x} + {\color{red}{\int{2 d x}}} = - \int{11 x d x} + \int{12 x^{2} d x} + {\color{red}{\left(2 x\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=11$$$ ja $$$f{\left(x \right)} = x$$$:

$$2 x + \int{12 x^{2} d x} - {\color{red}{\int{11 x d x}}} = 2 x + \int{12 x^{2} d x} - {\color{red}{\left(11 \int{x d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$2 x + \int{12 x^{2} d x} - 11 {\color{red}{\int{x d x}}}=2 x + \int{12 x^{2} d x} - 11 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=2 x + \int{12 x^{2} d x} - 11 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=12$$$ ja $$$f{\left(x \right)} = x^{2}$$$:

$$- \frac{11 x^{2}}{2} + 2 x + {\color{red}{\int{12 x^{2} d x}}} = - \frac{11 x^{2}}{2} + 2 x + {\color{red}{\left(12 \int{x^{2} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:

$$- \frac{11 x^{2}}{2} + 2 x + 12 {\color{red}{\int{x^{2} d x}}}=- \frac{11 x^{2}}{2} + 2 x + 12 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \frac{11 x^{2}}{2} + 2 x + 12 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Näin ollen,

$$\int{\left(3 x - 2\right) \left(4 x - 1\right) d x} = 4 x^{3} - \frac{11 x^{2}}{2} + 2 x$$

Sievennä:

$$\int{\left(3 x - 2\right) \left(4 x - 1\right) d x} = \frac{x \left(8 x^{2} - 11 x + 4\right)}{2}$$

Lisää integrointivakio:

$$\int{\left(3 x - 2\right) \left(4 x - 1\right) d x} = \frac{x \left(8 x^{2} - 11 x + 4\right)}{2}+C$$

Vastaus

$$$\int \left(3 x - 2\right) \left(4 x - 1\right)\, dx = \frac{x \left(8 x^{2} - 11 x + 4\right)}{2} + C$$$A


Please try a new game Rotatly