Funktion $$$\frac{2 x^{3} - 2}{x - 2}$$$ integraali

Laskin löytää funktion $$$\frac{2 x^{3} - 2}{x - 2}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{2 x^{3} - 2}{x - 2}\, dx$$$.

Ratkaisu

Yksinkertaista integroitavaa:

$${\color{red}{\int{\frac{2 x^{3} - 2}{x - 2} d x}}} = {\color{red}{\int{\frac{2 \left(x^{3} - 1\right)}{x - 2} d x}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \frac{x^{3} - 1}{x - 2}$$$:

$${\color{red}{\int{\frac{2 \left(x^{3} - 1\right)}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{x^{3} - 1}{x - 2} d x}\right)}}$$

Koska osoittajan aste ei ole pienempi kuin nimittäjän aste, suorita polynomien jakokulma (vaiheet voidaan nähdä »):

$$2 {\color{red}{\int{\frac{x^{3} - 1}{x - 2} d x}}} = 2 {\color{red}{\int{\left(x^{2} + 2 x + 4 + \frac{7}{x - 2}\right)d x}}}$$

Integroi termi kerrallaan:

$$2 {\color{red}{\int{\left(x^{2} + 2 x + 4 + \frac{7}{x - 2}\right)d x}}} = 2 {\color{red}{\left(\int{4 d x} + \int{2 x d x} + \int{x^{2} d x} + \int{\frac{7}{x - 2} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=4$$$:

$$2 \int{2 x d x} + 2 \int{x^{2} d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{4 d x}}} = 2 \int{2 x d x} + 2 \int{x^{2} d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(4 x\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:

$$8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{x^{2} d x}}}=8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = x$$$:

$$\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{2 x d x}}} = \frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(2 \int{x d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\int{x d x}}}=\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=7$$$ ja $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:

$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 2 {\color{red}{\int{\frac{7}{x - 2} d x}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 2 {\color{red}{\left(7 \int{\frac{1}{x - 2} d x}\right)}}$$

Olkoon $$$u=x - 2$$$.

Tällöin $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Näin ollen,

$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{u} d u}}}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Muista, että $$$u=x - 2$$$:

$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$

Näin ollen,

$$\int{\frac{2 x^{3} - 2}{x - 2} d x} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{x - 2}\right| \right)}$$

Lisää integrointivakio:

$$\int{\frac{2 x^{3} - 2}{x - 2} d x} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{x - 2}\right| \right)}+C$$

Vastaus

$$$\int \frac{2 x^{3} - 2}{x - 2}\, dx = \left(\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A


Please try a new game Rotatly