Funktion $$$\frac{\sin{\left(5 x \right)}}{5}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\sin{\left(5 x \right)}}{5}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{5}$$$ ja $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(5 x \right)}}{5} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(5 x \right)} d x}}{5}\right)}}$$
Olkoon $$$u=5 x$$$.
Tällöin $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{5}$$$.
Integraali muuttuu muotoon
$$\frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{5} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{5}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{5} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{5}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{25} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{25}$$
Muista, että $$$u=5 x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{25} = - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{25}$$
Näin ollen,
$$\int{\frac{\sin{\left(5 x \right)}}{5} d x} = - \frac{\cos{\left(5 x \right)}}{25}$$
Lisää integrointivakio:
$$\int{\frac{\sin{\left(5 x \right)}}{5} d x} = - \frac{\cos{\left(5 x \right)}}{25}+C$$
Vastaus
$$$\int \frac{\sin{\left(5 x \right)}}{5}\, dx = - \frac{\cos{\left(5 x \right)}}{25} + C$$$A