Funktion $$$\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}}\, dx$$$.
Ratkaisu
Olkoon $$$u=\frac{1}{x}$$$.
Tällöin $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x^{2}} = - du$$$.
Integraali muuttuu muotoon
$${\color{red}{\int{\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}} d x}}} = {\color{red}{\int{\left(- \tan{\left(u \right)}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \tan{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \tan{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\tan{\left(u \right)} d u}\right)}}$$
Kirjoita tangentti uudelleen muotoon $$$\tan\left( u \right)=\frac{\sin\left( u \right)}{\cos\left( u \right)}$$$:
$$- {\color{red}{\int{\tan{\left(u \right)} d u}}} = - {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}$$
Olkoon $$$v=\cos{\left(u \right)}$$$.
Tällöin $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sin{\left(u \right)} du = - dv$$$.
Näin ollen,
$$- {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}} = - {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$- {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}} = - {\color{red}{\left(- \int{\frac{1}{v} d v}\right)}}$$
Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{v} d v}}} = {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Muista, että $$$v=\cos{\left(u \right)}$$$:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\cos{\left(u \right)}}}}\right| \right)}$$
Muista, että $$$u=\frac{1}{x}$$$:
$$\ln{\left(\left|{\cos{\left({\color{red}{u}} \right)}}\right| \right)} = \ln{\left(\left|{\cos{\left({\color{red}{\frac{1}{x}}} \right)}}\right| \right)}$$
Näin ollen,
$$\int{\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}} d x} = \ln{\left(\left|{\cos{\left(\frac{1}{x} \right)}}\right| \right)}$$
Lisää integrointivakio:
$$\int{\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}} d x} = \ln{\left(\left|{\cos{\left(\frac{1}{x} \right)}}\right| \right)}+C$$
Vastaus
$$$\int \frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}}\, dx = \ln\left(\left|{\cos{\left(\frac{1}{x} \right)}}\right|\right) + C$$$A