Funktion $$$\sqrt{10} \left(10 - y\right) \sqrt{\frac{1}{y}}$$$ integraali

Laskin löytää funktion $$$\sqrt{10} \left(10 - y\right) \sqrt{\frac{1}{y}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \sqrt{10} \left(10 - y\right) \sqrt{\frac{1}{y}}\, dy$$$.

Ratkaisu

Syöte kirjoitetaan muotoon: $$$\int{\sqrt{10} \left(10 - y\right) \sqrt{\frac{1}{y}} d y}=\int{\frac{\sqrt{10} \left(10 - y\right)}{\sqrt{y}} d y}$$$.

Expand the expression:

$${\color{red}{\int{\frac{\sqrt{10} \left(10 - y\right)}{\sqrt{y}} d y}}} = {\color{red}{\int{\left(- \sqrt{10} \sqrt{y} + \frac{10 \sqrt{10}}{\sqrt{y}}\right)d y}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(- \sqrt{10} \sqrt{y} + \frac{10 \sqrt{10}}{\sqrt{y}}\right)d y}}} = {\color{red}{\left(\int{\frac{10 \sqrt{10}}{\sqrt{y}} d y} - \int{\sqrt{10} \sqrt{y} d y}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ käyttäen $$$c=\sqrt{10}$$$ ja $$$f{\left(y \right)} = \sqrt{y}$$$:

$$\int{\frac{10 \sqrt{10}}{\sqrt{y}} d y} - {\color{red}{\int{\sqrt{10} \sqrt{y} d y}}} = \int{\frac{10 \sqrt{10}}{\sqrt{y}} d y} - {\color{red}{\sqrt{10} \int{\sqrt{y} d y}}}$$

Sovella potenssisääntöä $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=\frac{1}{2}$$$:

$$\int{\frac{10 \sqrt{10}}{\sqrt{y}} d y} - \sqrt{10} {\color{red}{\int{\sqrt{y} d y}}}=\int{\frac{10 \sqrt{10}}{\sqrt{y}} d y} - \sqrt{10} {\color{red}{\int{y^{\frac{1}{2}} d y}}}=\int{\frac{10 \sqrt{10}}{\sqrt{y}} d y} - \sqrt{10} {\color{red}{\frac{y^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=\int{\frac{10 \sqrt{10}}{\sqrt{y}} d y} - \sqrt{10} {\color{red}{\left(\frac{2 y^{\frac{3}{2}}}{3}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ käyttäen $$$c=10 \sqrt{10}$$$ ja $$$f{\left(y \right)} = \frac{1}{\sqrt{y}}$$$:

$$- \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + {\color{red}{\int{\frac{10 \sqrt{10}}{\sqrt{y}} d y}}} = - \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + {\color{red}{\left(10 \sqrt{10} \int{\frac{1}{\sqrt{y}} d y}\right)}}$$

Sovella potenssisääntöä $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{1}{2}$$$:

$$- \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + 10 \sqrt{10} {\color{red}{\int{\frac{1}{\sqrt{y}} d y}}}=- \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + 10 \sqrt{10} {\color{red}{\int{y^{- \frac{1}{2}} d y}}}=- \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + 10 \sqrt{10} {\color{red}{\frac{y^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=- \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + 10 \sqrt{10} {\color{red}{\left(2 y^{\frac{1}{2}}\right)}}=- \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + 10 \sqrt{10} {\color{red}{\left(2 \sqrt{y}\right)}}$$

Näin ollen,

$$\int{\frac{\sqrt{10} \left(10 - y\right)}{\sqrt{y}} d y} = - \frac{2 \sqrt{10} y^{\frac{3}{2}}}{3} + 20 \sqrt{10} \sqrt{y}$$

Sievennä:

$$\int{\frac{\sqrt{10} \left(10 - y\right)}{\sqrt{y}} d y} = \frac{2 \sqrt{10} \sqrt{y} \left(30 - y\right)}{3}$$

Lisää integrointivakio:

$$\int{\frac{\sqrt{10} \left(10 - y\right)}{\sqrt{y}} d y} = \frac{2 \sqrt{10} \sqrt{y} \left(30 - y\right)}{3}+C$$

Vastaus

$$$\int \sqrt{10} \left(10 - y\right) \sqrt{\frac{1}{y}}\, dy = \frac{2 \sqrt{10} \sqrt{y} \left(30 - y\right)}{3} + C$$$A


Please try a new game Rotatly