Funktion $$$\frac{2 - x}{1 - x}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{2 - x}{1 - x}\, dx$$$.
Ratkaisu
Olkoon $$$u=1 - x$$$.
Tällöin $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - du$$$.
Integraali voidaan kirjoittaa muotoon
$${\color{red}{\int{\frac{2 - x}{1 - x} d x}}} = {\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{u + 1}{u}$$$:
$${\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{u + 1}{u} d u}\right)}}$$
Expand the expression:
$$- {\color{red}{\int{\frac{u + 1}{u} d u}}} = - {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}}$$
Integroi termi kerrallaan:
$$- {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}} = - {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u} d u}\right)}}$$
Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:
$$- \int{\frac{1}{u} d u} - {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u} d u} - {\color{red}{u}}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- u - {\color{red}{\int{\frac{1}{u} d u}}} = - u - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Muista, että $$$u=1 - x$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - {\color{red}{u}} = - \ln{\left(\left|{{\color{red}{\left(1 - x\right)}}}\right| \right)} - {\color{red}{\left(1 - x\right)}}$$
Näin ollen,
$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)} - 1$$
Lisää integraatiovakio (ja poista lausekkeesta vakio):
$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)}+C$$
Vastaus
$$$\int \frac{2 - x}{1 - x}\, dx = \left(x - \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A