Funktion $$$\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}$$$ integraali

Laskin löytää funktion $$$\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{\pi}{2}$$$ ja $$$f{\left(x \right)} = \frac{1}{x^{2} \sqrt{x^{2} - 1}}$$$:

$${\color{red}{\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x}}} = {\color{red}{\left(\frac{\pi \int{\frac{1}{x^{2} \sqrt{x^{2} - 1}} d x}}{2}\right)}}$$

Olkoon $$$x=\cosh{\left(u \right)}$$$.

Tällöin $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (ratkaisuvaiheet ovat nähtävissä »).

Lisäksi seuraa, että $$$u=\operatorname{acosh}{\left(x \right)}$$$.

Siis,

$$$\frac{1}{x^{2} \sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}$$$

Käytä identiteettiä $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}}$$$

Olettamalla, että $$$\sinh{\left( u \right)} \ge 0$$$, saamme seuraavaa:

$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}} = \frac{1}{\sinh{\left( u \right)} \cosh^{2}{\left( u \right)}}$$$

Näin ollen,

$$\frac{\pi {\color{red}{\int{\frac{1}{x^{2} \sqrt{x^{2} - 1}} d x}}}}{2} = \frac{\pi {\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{2}$$

Kirjoita integroituva hyperbolisen sekantin funktiona:

$$\frac{\pi {\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{2} = \frac{\pi {\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{2}$$

Funktion $$$\operatorname{sech}^{2}{\left(u \right)}$$$ integraali on $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$:

$$\frac{\pi {\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{2} = \frac{\pi {\color{red}{\tanh{\left(u \right)}}}}{2}$$

Muista, että $$$u=\operatorname{acosh}{\left(x \right)}$$$:

$$\frac{\pi \tanh{\left({\color{red}{u}} \right)}}{2} = \frac{\pi \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}{2}$$

Näin ollen,

$$\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x} = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x}$$

Lisää integrointivakio:

$$\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x} = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x}+C$$

Vastaus

$$$\int \frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}\, dx = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x} + C$$$A


Please try a new game Rotatly