Funktion $$$\frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5}\, dx$$$.
Ratkaisu
Syöte kirjoitetaan muotoon: $$$\int{\frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5} d x}=\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x}$$$.
Yksinkertaista integroitavaa:
$${\color{red}{\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x}}} = {\color{red}{\int{\frac{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5} d x}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{5}$$$ ja $$$f{\left(x \right)} = \left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}$$$:
$${\color{red}{\int{\frac{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5} d x}}} = {\color{red}{\left(\frac{\int{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}} d x}}{5}\right)}}$$
Integraalin $$$\int{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$ ja $$$\operatorname{dv}=e^{- \frac{x}{5}} dx$$$.
Tällöin $$$\operatorname{du}=\left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)^{\prime }dx=\frac{dx}{e^{\frac{1}{10}}}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{- \frac{x}{5}} d x}=- 5 e^{- \frac{x}{5}}$$$ (vaiheet ovat nähtävissä »).
Näin ollen,
$$\frac{{\color{red}{\int{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}} d x}}}}{5}=\frac{{\color{red}{\left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}} \cdot \left(- 5 e^{- \frac{x}{5}}\right)-\int{\left(- 5 e^{- \frac{x}{5}}\right) \cdot e^{- \frac{1}{10}} d x}\right)}}}{5}=\frac{{\color{red}{\left(- \frac{5 \left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \int{\left(- \frac{5 e^{- \frac{x}{5}}}{e^{\frac{1}{10}}}\right)d x}\right)}}}{5}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=- \frac{5}{e^{\frac{1}{10}}}$$$ ja $$$f{\left(x \right)} = e^{- \frac{x}{5}}$$$:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{{\color{red}{\int{\left(- \frac{5 e^{- \frac{x}{5}}}{e^{\frac{1}{10}}}\right)d x}}}}{5} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{{\color{red}{\left(- \frac{5 \int{e^{- \frac{x}{5}} d x}}{e^{\frac{1}{10}}}\right)}}}{5}$$
Olkoon $$$u=- \frac{x}{5}$$$.
Tällöin $$$du=\left(- \frac{x}{5}\right)^{\prime }dx = - \frac{dx}{5}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - 5 du$$$.
Integraali muuttuu muotoon
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\int{e^{- \frac{x}{5}} d x}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\int{\left(- 5 e^{u}\right)d u}}}}{e^{\frac{1}{10}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-5$$$ ja $$$f{\left(u \right)} = e^{u}$$$:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\int{\left(- 5 e^{u}\right)d u}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\left(- 5 \int{e^{u} d u}\right)}}}{e^{\frac{1}{10}}}$$
Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 {\color{red}{\int{e^{u} d u}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 {\color{red}{e^{u}}}}{e^{\frac{1}{10}}}$$
Muista, että $$$u=- \frac{x}{5}$$$:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 e^{{\color{red}{u}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 e^{{\color{red}{\left(- \frac{x}{5}\right)}}}}{e^{\frac{1}{10}}}$$
Näin ollen,
$$\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 e^{- \frac{x}{5}}}{e^{\frac{1}{10}}}$$
Sievennä:
$$\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x} = \left(- x - e^{\frac{1}{10}} + 5\right) e^{- \frac{x}{5} - \frac{1}{10}}$$
Lisää integrointivakio:
$$\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x} = \left(- x - e^{\frac{1}{10}} + 5\right) e^{- \frac{x}{5} - \frac{1}{10}}+C$$
Vastaus
$$$\int \frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5}\, dx = \left(- x - e^{\frac{1}{10}} + 5\right) e^{- \frac{x}{5} - \frac{1}{10}} + C$$$A