Tekijöihinjakolaskin
Jaa lausekkeet tekijöihin vaiheittain
Laskin yrittää hajottaa tekijöihin minkä tahansa lausekkeen (polynomin, binomin, trinomin, toisen asteen polynomin, rationaalisen, irrationaalisen, eksponentiaalisen, trigonometrisen tai niiden yhdistelmän) ja näyttää vaiheet. Tätä varten lausekkeeseen tehdään ensin joitakin sijoituksia, joilla se muunnetaan polynomiksi, ja sen jälkeen käytetään seuraavia menetelmiä: monomitekijän ulosotto (yhteinen tekijä), toisen asteen polynomien tekijöihinjako, ryhmittely ja uudelleenryhmittely, summan/erotuksen neliö, summan/erotuksen kuutio, neliöiden erotus, kuutioiden summa/erotus sekä rationaalijuurilause.
Solution
Your input: factor $$$x^{4} - 20 x^{2} + 64$$$.
We can treat $$$x^{4} - 20 x^{2} + 64$$$ as a quadratic function with respect to $$$x^{2}$$$.
Let $$$Y = x^{2}$$$.
Temporarily rewrite $$$x^{4} - 20 x^{2} + 64$$$ in terms of $$$Y$$$: $$$x^{4} - 20 x^{2} + 64$$$ becomes $$$Y^{2} - 20 Y + 64$$$.
To factor the quadratic function $$$Y^{2} - 20 Y + 64$$$, we should solve the corresponding quadratic equation $$$Y^{2} - 20 Y + 64=0$$$.
Indeed, if $$$Y_1$$$ and $$$Y_2$$$ are the roots of the quadratic equation $$$aY^2+bY+c=0$$$, then $$$aY^2+bY+c=a(Y-Y_1)(Y-Y_2)$$$.
Solve the quadratic equation $$$Y^{2} - 20 Y + 64=0$$$.
The roots are $$$Y_{1} = 16$$$, $$$Y_{2} = 4$$$ (use the quadratic equation calculator to see the steps).
Therefore, $$$Y^{2} - 20 Y + 64 = \left(Y - 16\right) \left(Y - 4\right)$$$.
Recall that $$$Y = x^{2}$$$: $$$x^{4} - 20 x^{2} + 64 = 1 \left(x^{2} - 16\right) \left(x^{2} - 4\right)$$$.
$${\color{red}{\left(x^{4} - 20 x^{2} + 64\right)}} = {\color{red}{1 \left(x^{2} - 16\right) \left(x^{2} - 4\right)}}$$
Apply the difference of squares formula $$$\alpha^{2} - \beta^{2} = \left(\alpha - \beta\right) \left(\alpha + \beta\right)$$$ with $$$\alpha = x$$$ and $$$\beta = 2$$$:
$$\left(x^{2} - 16\right) {\color{red}{\left(x^{2} - 4\right)}} = \left(x^{2} - 16\right) {\color{red}{\left(x - 2\right) \left(x + 2\right)}}$$
Apply the difference of squares formula $$$\alpha^{2} - \beta^{2} = \left(\alpha - \beta\right) \left(\alpha + \beta\right)$$$ with $$$\alpha = x$$$ and $$$\beta = 4$$$:
$$\left(x - 2\right) \left(x + 2\right) {\color{red}{\left(x^{2} - 16\right)}} = \left(x - 2\right) \left(x + 2\right) {\color{red}{\left(x - 4\right) \left(x + 4\right)}}$$
Thus, $$$x^{4} - 20 x^{2} + 64=\left(x - 4\right) \left(x - 2\right) \left(x + 2\right) \left(x + 4\right)$$$.
Answer: $$$x^{4} - 20 x^{2} + 64=\left(x - 4\right) \left(x - 2\right) \left(x + 2\right) \left(x + 4\right)$$$.