Integral de $$$\sqrt{- a^{2} + u^{2}}$$$ con respecto a $$$u$$$

La calculadora encontrará la integral/primitiva de $$$\sqrt{- a^{2} + u^{2}}$$$ con respecto a $$$u$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sqrt{- a^{2} + u^{2}}\, du$$$.

Solución

Sea $$$u=\cosh{\left(v \right)} \left|{a}\right|$$$.

Entonces $$$du=\left(\cosh{\left(v \right)} \left|{a}\right|\right)^{\prime }dv = \sinh{\left(v \right)} \left|{a}\right| dv$$$ (los pasos pueden verse »).

Además, se sigue que $$$v=\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}$$$.

El integrando se convierte en

$$$\sqrt{- a^{2} + u^{2}} = \sqrt{a^{2} \cosh^{2}{\left( v \right)} - a^{2}}$$$

Utiliza la identidad $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:

$$$\sqrt{a^{2} \cosh^{2}{\left( v \right)} - a^{2}}=\sqrt{\cosh^{2}{\left( v \right)} - 1} \left|{a}\right|=\sqrt{\sinh^{2}{\left( v \right)}} \left|{a}\right|$$$

Suponiendo que $$$\sinh{\left( v \right)} \ge 0$$$, obtenemos lo siguiente:

$$$\sqrt{\sinh^{2}{\left( v \right)}} \left|{a}\right| = \sinh{\left( v \right)} \left|{a}\right|$$$

Por lo tanto,

$${\color{red}{\int{\sqrt{- a^{2} + u^{2}} d u}}} = {\color{red}{\int{a^{2} \sinh^{2}{\left(v \right)} d v}}}$$

Aplica la fórmula de reducción de potencia $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$ con $$$\alpha= v $$$:

$${\color{red}{\int{a^{2} \sinh^{2}{\left(v \right)} d v}}} = {\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 v \right)} - 1\right)}{2} d v}}}$$

Aplica la regla del factor constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(v \right)} = a^{2} \left(\cosh{\left(2 v \right)} - 1\right)$$$:

$${\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 v \right)} - 1\right)}{2} d v}}} = {\color{red}{\left(\frac{\int{a^{2} \left(\cosh{\left(2 v \right)} - 1\right) d v}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{a^{2} \left(\cosh{\left(2 v \right)} - 1\right) d v}}}}{2} = \frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 v \right)} - a^{2}\right)d v}}}}{2}$$

Integra término a término:

$$\frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 v \right)} - a^{2}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{a^{2} d v} + \int{a^{2} \cosh{\left(2 v \right)} d v}\right)}}}{2}$$

Aplica la regla de la constante $$$\int c\, dv = c v$$$ con $$$c=a^{2}$$$:

$$\frac{\int{a^{2} \cosh{\left(2 v \right)} d v}}{2} - \frac{{\color{red}{\int{a^{2} d v}}}}{2} = \frac{\int{a^{2} \cosh{\left(2 v \right)} d v}}{2} - \frac{{\color{red}{a^{2} v}}}{2}$$

Aplica la regla del factor constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=a^{2}$$$ y $$$f{\left(v \right)} = \cosh{\left(2 v \right)}$$$:

$$- \frac{a^{2} v}{2} + \frac{{\color{red}{\int{a^{2} \cosh{\left(2 v \right)} d v}}}}{2} = - \frac{a^{2} v}{2} + \frac{{\color{red}{a^{2} \int{\cosh{\left(2 v \right)} d v}}}}{2}$$

Sea $$$w=2 v$$$.

Entonces $$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$ (los pasos pueden verse »), y obtenemos que $$$dv = \frac{dw}{2}$$$.

La integral puede reescribirse como

$$- \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(2 v \right)} d v}}}}{2} = - \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}}}{2}$$

Aplica la regla del factor constante $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(w \right)} = \cosh{\left(w \right)}$$$:

$$- \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}}}{2} = - \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\left(\frac{\int{\cosh{\left(w \right)} d w}}{2}\right)}}}{2}$$

La integral del coseno hiperbólico es $$$\int{\cosh{\left(w \right)} d w} = \sinh{\left(w \right)}$$$:

$$- \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(w \right)} d w}}}}{4} = - \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\sinh{\left(w \right)}}}}{4}$$

Recordemos que $$$w=2 v$$$:

$$- \frac{a^{2} v}{2} + \frac{a^{2} \sinh{\left({\color{red}{w}} \right)}}{4} = - \frac{a^{2} v}{2} + \frac{a^{2} \sinh{\left({\color{red}{\left(2 v\right)}} \right)}}{4}$$

Recordemos que $$$v=\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}$$$:

$$\frac{a^{2} \sinh{\left(2 {\color{red}{v}} \right)}}{4} - \frac{a^{2} {\color{red}{v}}}{2} = \frac{a^{2} \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}} \right)}}{4} - \frac{a^{2} {\color{red}{\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}}}{2}$$

Por lo tanto,

$$\int{\sqrt{- a^{2} + u^{2}} d u} = \frac{a^{2} \sinh{\left(2 \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)} \right)}}{4} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}$$

Usando las fórmulas $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, simplifica la expresión:

$$\int{\sqrt{- a^{2} + u^{2}} d u} = \frac{a^{2} u \sqrt{\frac{u}{\left|{a}\right|} - 1} \sqrt{\frac{u}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}$$

Añade la constante de integración:

$$\int{\sqrt{- a^{2} + u^{2}} d u} = \frac{a^{2} u \sqrt{\frac{u}{\left|{a}\right|} - 1} \sqrt{\frac{u}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}+C$$

Respuesta

$$$\int \sqrt{- a^{2} + u^{2}}\, du = \left(\frac{a^{2} u \sqrt{\frac{u}{\left|{a}\right|} - 1} \sqrt{\frac{u}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}\right) + C$$$A


Please try a new game Rotatly