$$$u$$$ değişkenine göre $$$\sqrt{- a^{2} + u^{2}}$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \sqrt{- a^{2} + u^{2}}\, du$$$.
Çözüm
$$$u=\cosh{\left(v \right)} \left|{a}\right|$$$ olsun.
O halde $$$du=\left(\cosh{\left(v \right)} \left|{a}\right|\right)^{\prime }dv = \sinh{\left(v \right)} \left|{a}\right| dv$$$ (adımlar » görülebilir).
Ayrıca, buradan $$$v=\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}$$$ elde edilir.
Dolayısıyla,
$$$\sqrt{- a^{2} + u^{2}} = \sqrt{a^{2} \cosh^{2}{\left( v \right)} - a^{2}}$$$
Özdeşliği kullanın: $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$
$$$\sqrt{a^{2} \cosh^{2}{\left( v \right)} - a^{2}}=\sqrt{\cosh^{2}{\left( v \right)} - 1} \left|{a}\right|=\sqrt{\sinh^{2}{\left( v \right)}} \left|{a}\right|$$$
$$$\sinh{\left( v \right)} \ge 0$$$ olduğunu varsayarsak, aşağıdakileri elde ederiz:
$$$\sqrt{\sinh^{2}{\left( v \right)}} \left|{a}\right| = \sinh{\left( v \right)} \left|{a}\right|$$$
O halde,
$${\color{red}{\int{\sqrt{- a^{2} + u^{2}} d u}}} = {\color{red}{\int{a^{2} \sinh^{2}{\left(v \right)} d v}}}$$
Kuvvet indirgeme formülü $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$'i $$$\alpha= v $$$ ile uygula:
$${\color{red}{\int{a^{2} \sinh^{2}{\left(v \right)} d v}}} = {\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 v \right)} - 1\right)}{2} d v}}}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(v \right)} = a^{2} \left(\cosh{\left(2 v \right)} - 1\right)$$$ ile uygula:
$${\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 v \right)} - 1\right)}{2} d v}}} = {\color{red}{\left(\frac{\int{a^{2} \left(\cosh{\left(2 v \right)} - 1\right) d v}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{a^{2} \left(\cosh{\left(2 v \right)} - 1\right) d v}}}}{2} = \frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 v \right)} - a^{2}\right)d v}}}}{2}$$
Her terimin integralini alın:
$$\frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 v \right)} - a^{2}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{a^{2} d v} + \int{a^{2} \cosh{\left(2 v \right)} d v}\right)}}}{2}$$
$$$c=a^{2}$$$ kullanarak $$$\int c\, dv = c v$$$ sabit kuralını uygula:
$$\frac{\int{a^{2} \cosh{\left(2 v \right)} d v}}{2} - \frac{{\color{red}{\int{a^{2} d v}}}}{2} = \frac{\int{a^{2} \cosh{\left(2 v \right)} d v}}{2} - \frac{{\color{red}{a^{2} v}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=a^{2}$$$ ve $$$f{\left(v \right)} = \cosh{\left(2 v \right)}$$$ ile uygula:
$$- \frac{a^{2} v}{2} + \frac{{\color{red}{\int{a^{2} \cosh{\left(2 v \right)} d v}}}}{2} = - \frac{a^{2} v}{2} + \frac{{\color{red}{a^{2} \int{\cosh{\left(2 v \right)} d v}}}}{2}$$
$$$w=2 v$$$ olsun.
Böylece $$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$ (adımlar » görülebilir) ve $$$dv = \frac{dw}{2}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$- \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(2 v \right)} d v}}}}{2} = - \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(w \right)} = \cosh{\left(w \right)}$$$ ile uygula:
$$- \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}}}{2} = - \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\left(\frac{\int{\cosh{\left(w \right)} d w}}{2}\right)}}}{2}$$
Hiperbolik kosinüsün integrali $$$\int{\cosh{\left(w \right)} d w} = \sinh{\left(w \right)}$$$:
$$- \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(w \right)} d w}}}}{4} = - \frac{a^{2} v}{2} + \frac{a^{2} {\color{red}{\sinh{\left(w \right)}}}}{4}$$
Hatırlayın ki $$$w=2 v$$$:
$$- \frac{a^{2} v}{2} + \frac{a^{2} \sinh{\left({\color{red}{w}} \right)}}{4} = - \frac{a^{2} v}{2} + \frac{a^{2} \sinh{\left({\color{red}{\left(2 v\right)}} \right)}}{4}$$
Hatırlayın ki $$$v=\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}$$$:
$$\frac{a^{2} \sinh{\left(2 {\color{red}{v}} \right)}}{4} - \frac{a^{2} {\color{red}{v}}}{2} = \frac{a^{2} \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}} \right)}}{4} - \frac{a^{2} {\color{red}{\operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}}}{2}$$
Dolayısıyla,
$$\int{\sqrt{- a^{2} + u^{2}} d u} = \frac{a^{2} \sinh{\left(2 \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)} \right)}}{4} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}$$
Formüller $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ kullanılarak ifadeyi sadeleştirin:
$$\int{\sqrt{- a^{2} + u^{2}} d u} = \frac{a^{2} u \sqrt{\frac{u}{\left|{a}\right|} - 1} \sqrt{\frac{u}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\sqrt{- a^{2} + u^{2}} d u} = \frac{a^{2} u \sqrt{\frac{u}{\left|{a}\right|} - 1} \sqrt{\frac{u}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}+C$$
Cevap
$$$\int \sqrt{- a^{2} + u^{2}}\, du = \left(\frac{a^{2} u \sqrt{\frac{u}{\left|{a}\right|} - 1} \sqrt{\frac{u}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{u}{\left|{a}\right|} \right)}}{2}\right) + C$$$A