Integral de $$$\sin{\left(9 x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sin{\left(9 x \right)}\, dx$$$.
Solución
Sea $$$u=9 x$$$.
Entonces $$$du=\left(9 x\right)^{\prime }dx = 9 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{9}$$$.
Por lo tanto,
$${\color{red}{\int{\sin{\left(9 x \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{9}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{9}\right)}}$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{9} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{9}$$
Recordemos que $$$u=9 x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{9} = - \frac{\cos{\left({\color{red}{\left(9 x\right)}} \right)}}{9}$$
Por lo tanto,
$$\int{\sin{\left(9 x \right)} d x} = - \frac{\cos{\left(9 x \right)}}{9}$$
Añade la constante de integración:
$$\int{\sin{\left(9 x \right)} d x} = - \frac{\cos{\left(9 x \right)}}{9}+C$$
Respuesta
$$$\int \sin{\left(9 x \right)}\, dx = - \frac{\cos{\left(9 x \right)}}{9} + C$$$A