Integral de $$$\sin{\left(4 x \right)} \cos{\left(5 x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\sin{\left(4 x \right)} \cos{\left(5 x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sin{\left(4 x \right)} \cos{\left(5 x \right)}\, dx$$$.

Solución

Reescribe el integrando utilizando la fórmula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ con $$$\alpha=4 x$$$ y $$$\beta=5 x$$$:

$${\color{red}{\int{\sin{\left(4 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(9 x \right)}}{2}\right)d x}}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = - \sin{\left(x \right)} + \sin{\left(9 x \right)}$$$:

$${\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(9 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(- \sin{\left(x \right)} + \sin{\left(9 x \right)}\right)d x}}{2}\right)}}$$

Integra término a término:

$$\frac{{\color{red}{\int{\left(- \sin{\left(x \right)} + \sin{\left(9 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\sin{\left(x \right)} d x} + \int{\sin{\left(9 x \right)} d x}\right)}}}{2}$$

La integral del seno es $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\int{\sin{\left(9 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = \frac{\int{\sin{\left(9 x \right)} d x}}{2} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$

Sea $$$u=9 x$$$.

Entonces $$$du=\left(9 x\right)^{\prime }dx = 9 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{9}$$$.

La integral se convierte en

$$\frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(9 x \right)} d x}}}}{2} = \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{2}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{9}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{2} = \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{9}\right)}}}{2}$$

La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{18} = \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{18}$$

Recordemos que $$$u=9 x$$$:

$$\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{18} = \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left({\color{red}{\left(9 x\right)}} \right)}}{18}$$

Por lo tanto,

$$\int{\sin{\left(4 x \right)} \cos{\left(5 x \right)} d x} = \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(9 x \right)}}{18}$$

Añade la constante de integración:

$$\int{\sin{\left(4 x \right)} \cos{\left(5 x \right)} d x} = \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(9 x \right)}}{18}+C$$

Respuesta

$$$\int \sin{\left(4 x \right)} \cos{\left(5 x \right)}\, dx = \left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(9 x \right)}}{18}\right) + C$$$A


Please try a new game Rotatly