Integral de $$$x e^{2} e^{- 2 x}$$$

La calculadora encontrará la integral/antiderivada de $$$x e^{2} e^{- 2 x}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int x e^{2} e^{- 2 x}\, dx$$$.

Solución

La entrada se reescribe: $$$\int{x e^{2} e^{- 2 x} d x}=\int{x e^{2 - 2 x} d x}$$$.

Para la integral $$$\int{x e^{2 - 2 x} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sean $$$\operatorname{u}=x$$$ y $$$\operatorname{dv}=e^{2 - 2 x} dx$$$.

Entonces $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{e^{2 - 2 x} d x}=- \frac{e^{2 - 2 x}}{2}$$$ (los pasos pueden verse »).

La integral se convierte en

$${\color{red}{\int{x e^{2 - 2 x} d x}}}={\color{red}{\left(x \cdot \left(- \frac{e^{2 - 2 x}}{2}\right)-\int{\left(- \frac{e^{2 - 2 x}}{2}\right) \cdot 1 d x}\right)}}={\color{red}{\left(- \frac{x e^{2 - 2 x}}{2} - \int{\left(- \frac{e^{2 - 2 x}}{2}\right)d x}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=- \frac{1}{2}$$$ y $$$f{\left(x \right)} = e^{2 - 2 x}$$$:

$$- \frac{x e^{2 - 2 x}}{2} - {\color{red}{\int{\left(- \frac{e^{2 - 2 x}}{2}\right)d x}}} = - \frac{x e^{2 - 2 x}}{2} - {\color{red}{\left(- \frac{\int{e^{2 - 2 x} d x}}{2}\right)}}$$

Sea $$$u=2 - 2 x$$$.

Entonces $$$du=\left(2 - 2 x\right)^{\prime }dx = - 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = - \frac{du}{2}$$$.

La integral se convierte en

$$- \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\int{e^{2 - 2 x} d x}}}}{2} = - \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}}{2}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{1}{2}$$$ y $$$f{\left(u \right)} = e^{u}$$$:

$$- \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}}{2} = - \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}}{2}$$

La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{x e^{2 - 2 x}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{4} = - \frac{x e^{2 - 2 x}}{2} - \frac{{\color{red}{e^{u}}}}{4}$$

Recordemos que $$$u=2 - 2 x$$$:

$$- \frac{x e^{2 - 2 x}}{2} - \frac{e^{{\color{red}{u}}}}{4} = - \frac{x e^{2 - 2 x}}{2} - \frac{e^{{\color{red}{\left(2 - 2 x\right)}}}}{4}$$

Por lo tanto,

$$\int{x e^{2 - 2 x} d x} = - \frac{x e^{2 - 2 x}}{2} - \frac{e^{2 - 2 x}}{4}$$

Simplificar:

$$\int{x e^{2 - 2 x} d x} = \frac{\left(- 2 x - 1\right) e^{2 - 2 x}}{4}$$

Añade la constante de integración:

$$\int{x e^{2 - 2 x} d x} = \frac{\left(- 2 x - 1\right) e^{2 - 2 x}}{4}+C$$

Respuesta

$$$\int x e^{2} e^{- 2 x}\, dx = \frac{\left(- 2 x - 1\right) e^{2 - 2 x}}{4} + C$$$A


Please try a new game Rotatly