Integral of $$$x e^{2} e^{- 2 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x e^{2} e^{- 2 x}\, dx$$$.
Solution
The input is rewritten: $$$\int{x e^{2} e^{- 2 x} d x}=\int{x e^{2 - 2 x} d x}$$$.
For the integral $$$\int{x e^{2 - 2 x} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{2 - 2 x} dx$$$.
Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{2 - 2 x} d x}=- \frac{e^{2 - 2 x}}{2}$$$ (steps can be seen »).
So,
$${\color{red}{\int{x e^{2 - 2 x} d x}}}={\color{red}{\left(x \cdot \left(- \frac{e^{2 - 2 x}}{2}\right)-\int{\left(- \frac{e^{2 - 2 x}}{2}\right) \cdot 1 d x}\right)}}={\color{red}{\left(- \frac{x e^{2 - 2 x}}{2} - \int{\left(- \frac{e^{2 - 2 x}}{2}\right)d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=- \frac{1}{2}$$$ and $$$f{\left(x \right)} = e^{2 - 2 x}$$$:
$$- \frac{x e^{2 - 2 x}}{2} - {\color{red}{\int{\left(- \frac{e^{2 - 2 x}}{2}\right)d x}}} = - \frac{x e^{2 - 2 x}}{2} - {\color{red}{\left(- \frac{\int{e^{2 - 2 x} d x}}{2}\right)}}$$
Let $$$u=2 - 2 x$$$.
Then $$$du=\left(2 - 2 x\right)^{\prime }dx = - 2 dx$$$ (steps can be seen »), and we have that $$$dx = - \frac{du}{2}$$$.
Thus,
$$- \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\int{e^{2 - 2 x} d x}}}}{2} = - \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=- \frac{1}{2}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$- \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}}{2} = - \frac{x e^{2 - 2 x}}{2} + \frac{{\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}}{2}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{x e^{2 - 2 x}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{4} = - \frac{x e^{2 - 2 x}}{2} - \frac{{\color{red}{e^{u}}}}{4}$$
Recall that $$$u=2 - 2 x$$$:
$$- \frac{x e^{2 - 2 x}}{2} - \frac{e^{{\color{red}{u}}}}{4} = - \frac{x e^{2 - 2 x}}{2} - \frac{e^{{\color{red}{\left(2 - 2 x\right)}}}}{4}$$
Therefore,
$$\int{x e^{2 - 2 x} d x} = - \frac{x e^{2 - 2 x}}{2} - \frac{e^{2 - 2 x}}{4}$$
Simplify:
$$\int{x e^{2 - 2 x} d x} = \frac{\left(- 2 x - 1\right) e^{2 - 2 x}}{4}$$
Add the constant of integration:
$$\int{x e^{2 - 2 x} d x} = \frac{\left(- 2 x - 1\right) e^{2 - 2 x}}{4}+C$$
Answer
$$$\int x e^{2} e^{- 2 x}\, dx = \frac{\left(- 2 x - 1\right) e^{2 - 2 x}}{4} + C$$$A