Integral de $$$i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1\right)\, dx$$$.

Solución

La entrada se reescribe: $$$\int{\left(i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1\right)d x}=\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x}$$$.

Integra término a término:

$${\color{red}{\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{y^{2} d x} - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$- \int{y^{2} d x} - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{\int{1 d x}}} = - \int{y^{2} d x} - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{x}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=y^{2}$$$:

$$- x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{\int{y^{2} d x}}} = - x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{x y^{2}}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=i n t$$$:

$$- x y^{2} - x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + {\color{red}{\int{i n t d x}}} = - x y^{2} - x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + {\color{red}{i n t x}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\sqrt{2} y^{2}$$$ y $$$f{\left(x \right)} = x^{\frac{7}{2}}$$$:

$$i n t x - x y^{2} - x - {\color{red}{\int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x}}} = i n t x - x y^{2} - x - {\color{red}{\sqrt{2} y^{2} \int{x^{\frac{7}{2}} d x}}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{7}{2}$$$:

$$i n t x - x y^{2} - x - \sqrt{2} y^{2} {\color{red}{\int{x^{\frac{7}{2}} d x}}}=i n t x - x y^{2} - x - \sqrt{2} y^{2} {\color{red}{\frac{x^{1 + \frac{7}{2}}}{1 + \frac{7}{2}}}}=i n t x - x y^{2} - x - \sqrt{2} y^{2} {\color{red}{\left(\frac{2 x^{\frac{9}{2}}}{9}\right)}}$$

Por lo tanto,

$$\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x} = i n t x - \frac{2 \sqrt{2} x^{\frac{9}{2}} y^{2}}{9} - x y^{2} - x$$

Añade la constante de integración:

$$\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x} = i n t x - \frac{2 \sqrt{2} x^{\frac{9}{2}} y^{2}}{9} - x y^{2} - x+C$$

Respuesta

$$$\int \left(i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1\right)\, dx = \left(i n t x - \frac{2 \sqrt{2} x^{\frac{9}{2}} y^{2}}{9} - x y^{2} - x\right) + C$$$A


Please try a new game Rotatly