Integral of $$$i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1\right)\, dx$$$.

Solution

The input is rewritten: $$$\int{\left(i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1\right)d x}=\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x}$$$.

Integrate term by term:

$${\color{red}{\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{y^{2} d x} - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$- \int{y^{2} d x} - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{\int{1 d x}}} = - \int{y^{2} d x} - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{x}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=y^{2}$$$:

$$- x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{\int{y^{2} d x}}} = - x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + \int{i n t d x} - {\color{red}{x y^{2}}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=i n t$$$:

$$- x y^{2} - x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + {\color{red}{\int{i n t d x}}} = - x y^{2} - x - \int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x} + {\color{red}{i n t x}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\sqrt{2} y^{2}$$$ and $$$f{\left(x \right)} = x^{\frac{7}{2}}$$$:

$$i n t x - x y^{2} - x - {\color{red}{\int{\sqrt{2} x^{\frac{7}{2}} y^{2} d x}}} = i n t x - x y^{2} - x - {\color{red}{\sqrt{2} y^{2} \int{x^{\frac{7}{2}} d x}}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{7}{2}$$$:

$$i n t x - x y^{2} - x - \sqrt{2} y^{2} {\color{red}{\int{x^{\frac{7}{2}} d x}}}=i n t x - x y^{2} - x - \sqrt{2} y^{2} {\color{red}{\frac{x^{1 + \frac{7}{2}}}{1 + \frac{7}{2}}}}=i n t x - x y^{2} - x - \sqrt{2} y^{2} {\color{red}{\left(\frac{2 x^{\frac{9}{2}}}{9}\right)}}$$

Therefore,

$$\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x} = i n t x - \frac{2 \sqrt{2} x^{\frac{9}{2}} y^{2}}{9} - x y^{2} - x$$

Add the constant of integration:

$$\int{\left(i n t - \sqrt{2} x^{\frac{7}{2}} y^{2} - y^{2} - 1\right)d x} = i n t x - \frac{2 \sqrt{2} x^{\frac{9}{2}} y^{2}}{9} - x y^{2} - x+C$$

Answer

$$$\int \left(i n t - \sqrt{2} y^{2} \sqrt{x^{7}} - y^{2} - 1\right)\, dx = \left(i n t x - \frac{2 \sqrt{2} x^{\frac{9}{2}} y^{2}}{9} - x y^{2} - x\right) + C$$$A


Please try a new game Rotatly