Integral de $$$\frac{\cos^{2}{\left(x \right)}}{3} - 1$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\cos^{2}{\left(x \right)}}{3} - 1$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{\cos^{2}{\left(x \right)}}{3} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\int{\frac{\cos^{2}{\left(x \right)}}{3} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{\cos^{2}{\left(x \right)}}{3} d x} - {\color{red}{x}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$:

$$- x + {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{3} d x}}} = - x + {\color{red}{\left(\frac{\int{\cos^{2}{\left(x \right)} d x}}{3}\right)}}$$

Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha=x$$$:

$$- x + \frac{{\color{red}{\int{\cos^{2}{\left(x \right)} d x}}}}{3} = - x + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{3}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$:

$$- x + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{3} = - x + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}}{3}$$

Integra término a término:

$$- x + \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{6} = - x + \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{6}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$- x + \frac{\int{\cos{\left(2 x \right)} d x}}{6} + \frac{{\color{red}{\int{1 d x}}}}{6} = - x + \frac{\int{\cos{\left(2 x \right)} d x}}{6} + \frac{{\color{red}{x}}}{6}$$

Sea $$$u=2 x$$$.

Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.

Por lo tanto,

$$- \frac{5 x}{6} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{6} = - \frac{5 x}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{6}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$- \frac{5 x}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{6} = - \frac{5 x}{6} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{6}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{5 x}{6} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{12} = - \frac{5 x}{6} + \frac{{\color{red}{\sin{\left(u \right)}}}}{12}$$

Recordemos que $$$u=2 x$$$:

$$- \frac{5 x}{6} + \frac{\sin{\left({\color{red}{u}} \right)}}{12} = - \frac{5 x}{6} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{12}$$

Por lo tanto,

$$\int{\left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)d x} = - \frac{5 x}{6} + \frac{\sin{\left(2 x \right)}}{12}$$

Añade la constante de integración:

$$\int{\left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)d x} = - \frac{5 x}{6} + \frac{\sin{\left(2 x \right)}}{12}+C$$

Respuesta

$$$\int \left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)\, dx = \left(- \frac{5 x}{6} + \frac{\sin{\left(2 x \right)}}{12}\right) + C$$$A


Please try a new game Rotatly